Physical Organic Chemistry of Transition Metal Carbene Complexes. 12.¹ Spectroscopic Detection and Kinetic Characterization of the Intermediate in the Nucleophilic Substitution Reaction of $(CO)_5Cr=C(OCH_3)$ Ph with Thiolate Ions in Aqueous Acetonitrile

Claude F. Bernasconi,* Francis X. Flores, and Kevin W. Kittredge

Department of Chemistry and Biochemistry University of California, Santa Cruz, California 95064

Received April 15, 1998

Fischer-type carbene complexes undergo facile nucleophilic substitution by the two-step mechanism illustrated in eq 1 for the reaction of a prototype carbene complex.² The evidence for

$$(CO)_{5}M = C \begin{pmatrix} OR \\ + Nu^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} OR \\ -C \\ -R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C \begin{pmatrix} Nu \\ + RO^{-} \\ R' \end{pmatrix} (CO)_{5}M = C$$

this mechanism has mostly been based on analogy with reactions of carboxylic esters. However, direct observation of **5-M** in the reaction of **4-M** with MeO⁻ in methanol has recently been reported³ and kinetic evidence for **6-Cr** in the reaction of **4-Cr**

$$(CO)_5M = C \xrightarrow{OCH_3} \qquad \begin{array}{c} OCH_3 & OCH_3 \\ (CO)_5\overline{M} - C - Ph \\ Ph & OCH_3 \\ 0 \\ OCH_3 \\ OCH_3$$

with primary aliphatic amines has been presented.⁴ Furthermore, in the reaction of **7-Cr** with NaSPh in methanol/benzene, Lam *et al.*⁵ observed conversion of **7-Cr** to an unidentified species which, upon treatment with HCl, yielded **8-Cr**. From this they inferred that the unidentified species is **9-Cr**.

$$(CO)_5Cr = C \begin{pmatrix} OCH_3 \\ CH_3 \end{pmatrix} \\ (CO)_5Cr = C \begin{pmatrix} SPh \\ CH_3 \end{pmatrix} \\ (CO)_5Cr = C \begin{pmatrix} OCH_3 \\ CH_3 \end{pmatrix} \\ (CO)_5\bar{Cr} - C - CH_3 \\ SPh \end{pmatrix} \\ \frac{SPh}{SPh} \\ \frac{SPh}{SPh} \\ \frac{SPh}{SPh} \end{pmatrix}$$

In this communication, we report the first direct spectroscopic observation and kinetic characterization of the intermediate in a "real" substitution reaction, i.e., one where the products are different from reactants.⁶ It is the reaction of **4-Cr** with $CH_2CH_2S^-$ and $HOCH_2CH_2S^-$ in 50% MeCN-50% water (v/v), eq 2. Figure 1 shows absorption spectra of **4-Cr** in the

4-Cr+RS⁻
$$\xrightarrow{k_1}$$
 (CO)₅ \overrightarrow{Cr} $\xrightarrow{Cr-Ph}$ $\xrightarrow{k_2 + k_2^Ha_{H'}}$ (CO)₅Cr=C \xrightarrow{SR} + CH₃O⁻
SR 10-Cr 11-Cr (2)

presence of *n*-propanethiol in an *N*-methylmorpholine buffer at pH 7.38. This pH is well below the $pK_a^{RSH} = 11.94$ of

(6) In contrast to the reaction of 4-M with MeO⁻ that leads to the symmetrical 5-M.³

Figure 1. Conversion of 4-Cr (a) to 11-Cr (b) in the presence of 4×10^{-7} M CH₃CH₂CH₂S⁻ in an *N*-methylmorpholine buffer at pH 7.38. Spectra taken every 5 s for 2 min. Spectrum c corresponds to 10-Cr generated in the presence of 10^{-3} M CH₃CH₂CH₂S⁻ at pH 11.0.

n-propanethiol and hence the concentration of the thiolate ion is small $(4 \times 10^{-7} \text{ M})$. There is a clean conversion of **4-Cr** (a) to **11-Cr** (b) whose spectrum is identical to that of authentic **11-Cr**. The isosbestic point indicates that there is no accumulation of an intermediate (**10-Cr**) under these conditions. Similar observations were made for the reaction of **4-Cr** with HOCH₂CH₂S⁻.

A different situation arises with higher thiolate ion concentrations at a pH close to pK_a^{RSH} (Figure 1c). Here **4-Cr** is rapidly converted to a new species whose spectrum resembles neither that of **4-Cr** nor that of **11-Cr**. This species is stable for several minutes but upon acidification yields the product (**11-Cr**). We conclude that the new species is **10-Cr**.

Rates of the formation of **10-Cr** were measured by stoppedflow spectrometry. In the presence of excess thiolate ion, the observed pseudo-first-order rate constant showed a linear dependence on [RS⁻] according to eq 3 from which k_1 could be

$$k_{\rm obsd} = k_1 [\rm{RS}^-] + k_{-1}$$
 (3)

obtained; on the other hand, the intercepts of the plots of k_{obsd} vs [RS⁻] were too small to yield accurate k_{-1} values.

Rates were also measured in *N*-morpholine buffers (HOCH₂CH₂S⁻) and triethylamine buffers (CH₃CH₂CH₂S⁻) at different pH values. Under these conditions **10-Cr** is a steady-state intermediate. In each buffer a plot of k_{obsd} vs thiolate ion concentration is linear with pH-dependent slope and negligible intercept. A representative plot of 1/slope vs $1/a_{H^+}$ is shown in Figure 2. These results are consistent with eq 4 derived for steady-state conditions; tests for buffer catalysis showed that it

slope =
$$\frac{k_1 k_2 + k_1 k_2^{\text{H}} a_{\text{H}^+}}{k_{-1} + k_2 + k_2^{\text{H}} a_{\text{H}^+}}$$
 (4)

...

is negligible at low buffer concentrations. The linearity of the plot indicates that k_2 for spontaneous loss of MeO⁻ is negligible compared to $k_2^H a_{\rm H^+}$ for acid catalysis so that eq 4, after inversion, simplifies to eq 5. Analysis according to eq 5 yields the k_1 and k_2^H/k_{-1} values reported in Table 1. The agreement between the k_1 values obtained via eqs 5 and 3 is excellent.

7983

⁽¹⁾ Part 11: Bernasconi, C. F.; Leyes, A. E. J. Chem. Soc., Perkin Trans. 2 1997, 1641.

⁽²⁾ Dötz, K. H.; Fischer, H.; Hofmann, P.; Kreissl, F. R.; Schubert, U.; Weiss, K. *Transitional Metal Complexes*; Verlag Chemie: Deerfield Beach, FL, 1983.

⁽³⁾ Bernasconi, C. F.; Flores, F. X.; Gandler, J. P.; Leyes, A. E. Organometallics **1994**, *13*, 2186.

⁽⁴⁾ Bernasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1993, 115, 1341.
(5) Lam, C. T.; Senoff, C. F.; Ward, J. E. H. J. Organomet. Chem. 1974, 70, 273.

Figure 2. Plot of slope⁻¹ vs $a_{H^+}^{-1}$ for the reaction **4-Cr** with HOCH₂CH₂S⁻.

$$\frac{1}{\text{slope}} = \frac{1}{k_1} + \frac{k_{-1}}{k_1 k_2^{\text{H}} a_{\text{H}^+}}$$
(5)

In a third type of experiment **10-Cr** was generated in a thiolate ion solution at pH > 11 and then rapidly mixed in the stoppedflow apparatus with a series of *N*-methylmorpholine buffers at pH between 6.98 and 8.04. The k_{obsd} values showed a linear dependence on a_{H^+} according to eq 6, with k_{-1} being too small to yield an accurate value. This is consistent with the fact that

$$k_{\rm obsd} = k_2^{\rm H} a_{\rm H^+} + k_{-1} \tag{6}$$

the spectrum of the product is virtually identical with that of **11-Cr**, with no measurable contribution from **4-Cr**. These data yielded $k_2^{\rm H}$; in conjunction with $k_2^{\rm H}/k_{-1}$ this then allowed calculation of k_{-1} which, in combination with k_1 , yielded K_1 (Table 1).

With respect to the rate and equilibrium constants, the following points are noteworthy.

(1) The equilibrium constants ($K_1 = k_1/k_{-1}$) for RS⁻ addition to **4-Cr** are high, much higher than for MeO⁻ addition in methanol ($K_1 = 70.1 \text{ M}^{-1}$),³ despite the lower proton basicity of the thiolate ions. This reflects the well-known high carbon basicity of sulfur bases which has been attributed to their high polarizability⁷ or "softness".⁸ The K_1 values are comparable to K_1 for HOCH₂CH₂S⁻ addition to **12** (eq 7) in 50% DMSO-50% wate⁹ (Table 1),

$$\frac{Ph}{MeO} = C \frac{NO_2}{Ph} + RS^- \underbrace{\frac{k_1}{k_{-1}}}_{S_R} MeO - C - C \frac{Ph}{S_R} \frac{NO_2^-}{Ph}$$
(7)

suggesting that stabilization of the negative charge in 10-Cr by the (CO)₅Cr moiety is comparable to that in 13 by the C(NO₂)Ph moiety.

(2) The k_1 and k_{-1} values for the reaction of **4-Cr** with HOCH₂CH₂S⁻ are about 2 orders of magnitude higher than for the reaction of **12** with the same nucleophile. With the K_1 values being about the same for both reactions, this result indicates that the *intrinsic* rate constant, k_0 ,¹⁰ for the reaction of **4-Cr** is ~2 orders of magnitude higher than for the reaction of **12**. The reason

Table 1. Rate and Equilibrium Constants for the Reactions of **4-Cr** with Thiolate Ions in 50% MeCN-50% Water (v/v) at 25 °C

	$\mathrm{CH_3CH_2CH_2S^-} + 4\text{-}\mathbf{Cr}^a$	$\begin{array}{l} \text{HOCH}_2\text{CH}_2\text{S}^- \\ + \textbf{4-Cr}^a \end{array}$	$\begin{array}{c} \text{HOCH}_2\text{CH}_2\text{S}^- \\ + 12^b \end{array}$
pK_{a}^{RSH}	11.94	10.79	10.56
k_{1} , M^{-1} s ⁻¹ c	$(1.34 \pm 0.07) \times 10^4$	$(2.25 \pm 0.09) \times 10^4$	3.90×10^2
k_1 , $M^{-1} s^{-1 d}$	$(1.40 \pm 0.15) \times 10^4$	$(2.08 \pm 0.25) \times 10^4$	
$k_2^{\rm H}/k_{-1},{\rm M}^{-1}e$	$(4.29 \pm 0.93) \times 10^{8}$	$(6.98 \pm 1.24) \times 10^{7}$	
$k_2^{\tilde{H}}, M^{-1} s^{-1}$	$(5.39 \pm 0.11) \times 10^{8}$	$(4.42 \pm 0.11) \times 10^{8}$	
k_{-1} , s ⁻¹	1.26 ± 0.28	6.33 ± 1.10	5.10×10^{-2}
$K_1 = k_1 /$	$(1.06 \pm 0.24) \times 10^4$	$(3.55 \pm 0.63) \times 10^3$	7.65×10^{3}
k_{-1}, M^{-1}			

^{*a*} In 50% MeCN–50% H₂O at 25 °C, this work. ^{*b*} In 50% DMSO– 50% H₂O at 20 °C, ref 9. ^{*c*} From eq 3. ^{*d*} From eq 5. ^{*e*} From eq 5 using k_1 from eq 3.

Scheme 1

RS⁻ + sol
$$\frac{k_d}{k_{-1}}$$
 RS⁻ + sol
RS⁻ + 4-Cr $\frac{k_1'}{k_{-1}}$ 10-Cr

for this state of affairs in undoubtedly the same as the reason k_0 for deprotonation of **7-Cr** by OH⁻ is about 2 orders of magnitude higher than k_0 for deprotonation of PhCH₂NO₂,¹¹ i.e., the resonance component that contributes to the stabilization of the anion derived from the Fischer carbenes is not quite as strong as that for nitronate ions.¹²

(3) The dependence of k_1 on the basicity of the thiolate ion is unusual in that k_1 for HOCH₂CH₂S⁻ is slightly larger than that for CH₃CH₂CH₂S⁻, even though HOCH₂CH₂S⁻ is *less* basic than CH₃CH₂CH₂S⁻. This suggests a negative β_{nuc} value of approximately -0.2. Negative β_{nuc} values are rare but not without precedent.¹⁴ According to Jencks,¹⁴ they may result from the requirement for partial desolvation of the nucleophile prior to reaction, as illustrated in Scheme 1. In terms of Scheme 1, the experimental k_1 value corresponds to K_dk_1 and hence $\beta_{nuc}(obsd)$ = $d(\log k_1)/d(pK_a^{RSH}) = d(\log(K_dk_1))/d(pK_a^{RSH}) = d(\log K_d)/$ $d(pK_a^{RSH}) + d(\log k_1)/d(pK_a^{RSH}) = \beta_d + \beta'_{nuc}$. Since desolvation is more difficult for a more basic nucleophile, $\beta_d < 0$. If β'_{nuc} is small (early transition state), $\beta_{nuc}(obsd)$ may be dominated by β_d and become negative.

(4) The dependence of K_1 on pK_a^{RSH} , as measured by $\beta_{\text{eq}} = d(\log K_1)/d(pK_a^{\text{RSH}}) = 0.41 \pm 0.17$ is quite small. Even though the experimental uncertainty is large,¹⁵ β_{eq} is clearly smaller than unity, which is common for thiolate ion addition to electrophiles.^{9,16}

(5) With respect to conversion of **10-Cr** to products, no k_2 value for spontaneous expulsion of MeO⁻ could be measured because this reaction is too slow to compete with decomposition of **10-Cr** into unidentified byproducts. However, at pH < 8 acidcatalyzed conversion of **10-Cr** to products $(k_2^{\rm H})$ is a clean reaction. The $k_2^{\rm H}$ value for the reaction of CH₃CH₂CH₂S⁻ is slightly higher than with HOCH₂CH₂S⁻. This is consistent with increased "push" by the more basic CH₃CH₂CH₂S group, due to the π donation by the sulfur atom.

JA9812655

^{(7) (}a) Sander, E. G.; Jencks, W. P. J. Am. Chem. Soc. **1968**, 90, 6154. (b) Hine, J.; Weimar, R. D., Jr. J. Am. Chem. Soc. **1965**, 87, 3387.

 ⁽⁸⁾ Pearson, R. G.; Songstad, J. J. Am. Chem. Soc. 1967, 89, 1827.
 (9) Bernasconi, C. F.; Fassberg, J.; Killion, R. B.; Rappoport, Z. J. Am.

⁽⁹⁾ Bernasconi, C. F.; Fassberg, J.; Klinon, K. B.; Kappoport, Z. J. An Chem. Soc. **1990**, 112, 3169.

⁽¹⁰⁾ For a reaction with the forward rate constant k_1 and the reverse rate constant k_{-1} , the intrinsic rate constant is defined as $k_0 = k_1 = k_{-1}$ when $K_1 = k_1/k_{-1} = 1$ ($\Delta G^\circ = 0$).

⁽¹¹⁾ Bernasconi, C. F. Chem. Soc. Rev. 1997, 26, 299.

⁽¹²⁾ For a discussion of the relationship between intrinsic rate constants and resonance see ref 13.

^{(13) (}a) Bernasconi, C. F. Acc. Chem. Res. **1987**, 20, 301. (b) Bernasconi, C. F. Adv. Phys. Org. Chem. **1992**, 27, 119.

⁽¹⁴⁾ Jencks, W. P.; Haber, M. T.; Herschlag, D.; Nazaretian, K. L. J. Am. Chem. Soc. **1986**, 108, 479.

⁽¹⁵⁾ β_{eq} is based on two points only and the K_1 values have a large uncertainty.

 ^{(16) (}a) Bernasconi, C. F.; Killion, R. B., Jr. J. Am. Chem. Soc. 1988, 110,
 7506. (b) Bernasconi, C. F.; Schuck, D. F. J. Org. Chem. 1992, 57, 2365.